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ABSTRACT

Orthogonal polynomials satisfy a three term

recurrence relation. The purpose of the paper is to

give estimates for the orthogonal polynomials and the

corresponding weight function provided that the coefficients

in the recurrence formula behave in a prescribed manner.
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EXPLANATION

Orthogonal polynomials provide a convenient means to

expand functions into series in polynomials. When investigating

these series one has to be able to estimate the size of the orthogonal

polynomials. The present paper shows how to estimate orthogonal

polynomials when the recurrence relation for these polynomials is
-

~ 

. 

given.
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Let (cc and (y 5 > be given sequences of real members. Putting -

p 1 0, p
0 — and defining p~ for n = 1.2,... by

~n—2xP~_1(x) ~~~
- P~ (x) + a 1 p 1(x) + v— p 2 (x)

n-i

we obtain a system of polynomials {p}~~0 which by a result of .7. Favard (see e.g. (21)

is orthonormal with respect to some positive measure dcc acting on the real line. Letr.
C — I12 _~~~~~~~ I + 2~cc~~~ 1 + Ii — 2 —i

It has been shown in (3) that under the assumption

(1)

• th. measure dcc can be written as

dci(z) — ci’(x)dx + 
~ 
(jumps outside (—1 ,1))

where a ’ is positive and continuous on (—1 ,1) and a ’ vanishes outside (—1 ,11 . At

th. present tim. it is not clear that assuming (1) how a ’ behaves near -1 and 1 . In

Ca.. of the Tsch.bysh.v polynomials (U • 0 for n 0,1,..., 1 and —

for a — 2,3,...) ci’ is not continuous at -l and 1 . For the Tschebyshev polynomials

of second kind (a — 0 and y — for n — 0.1,...) a’ is not positive at —1 and

I . Since th. works of C. Slego (see e.g. (4) )  it has become known that those measures

~~ for which

If(2) J log a’(cos e)do > —~~~~

-if

play a very important role in the theory of orthogonal polynomials. Therefore it is natural
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to ask if (1) implies (2). It is easy to see that under the assumption supp(da) = (— 1 ,13
the inequality (2) follows from (1) ((3)). Otherwise the question is still open. It was

proved in (3 1 that

(3) ~~~n c  <~~ 
*

n—0 n

implies

a’ (x) > const fi~
for —1 < x < 1 . Hence (2) follows from (3). K. 14. Case suggested in 11) that (2) holds

whenever

l i m s u p n c <~~—

The purpose of this note is to show that the weaker condition

(4) 
~ (n+1)c < A log(m+l) (a • 1,2,...)
n 0  Ti

not only implies (2) but also gives a pointwise estimate for a’ . We will see that

assuming (4) log a is very far from being nonintegrable. Our plan is the following.

First, using an absolutely elementary method, we obtain estimate for I~~1 . This method

is somewhat miraculous since we establish an inequality which improves itself when applied

repeatedly. Having bound for l~~I the corresponding estimate for a’ follows from a

result in (3J .

THEORSM. Suppose that (4) holds with a suitable constant A > 0 • Then there exist two

positive constants A and A depending only on A and inf y /y such that1 2 
~ 

n—l n

(5) tpn
(,~ I < A

1(l—x 2) 2 (—1 < x < 1)

for Ti — 1,2 , . . .  and

1 2 A
(6) cc’ (x) > A1 (l— x ~ 

2 (— 1 < x ~ 1)

Proof. Let x c (-1,11 and put x— co s 0 where 0 < 0 < 1 ! . Define • by

—2—
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•(O) p(x) - e~~ ~~_1(x)

Then

— e~~
0 

$~~~~~(0) — p (x) — 2xP~_ 1(x) + ~~~2
(x)

and by the recurrence formula

(7) $ (0) _e ie 
1
~n—l~

8
~ 

=

• (1 — 2 ~~~~~ p ( x) — 2Ct 1P l~~~ 
+ Ii — 2 f— 3

* n n—l

consequently

— n—l~
0
~ •~~ ~n ~ IPk(X) Ik=n—2

Using again the recurrence formula we obtain

n H
(8) 

~ 1p~(x) < K 
~ IPk(x) (H = n—l ,n)

k—n-2 k M-l

where K depends only on sup %, inf y~~~/y~ and sup . Furthermore, from the

definition of • follows that

(9) 
~~~~~~~ Ip~(x)t < I#~(e)I~ ~~~ Ip~_1 x I  ~ Is~ce)I

k Therefore

I,~(e) - ~~~~~ 
~~~~~~ 

< 2Kc~ (l_ x2 ) 2 

I~~i I n_l (0~~

Recall that • - •—ie 
•n-l is a polynomial of degree n in x . Thus by a theorem of

S. Bernstein

— ~~~~~ 
n—l~~

’’ < 2Kc~ (n+l) 
1
~~~ 1’

n_l (0~~ •

thet is

—3—
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max I, (0)! < I$f l l ( 0 ) J  (1 + 2Kc (n+3.)3
x l  lxI.9

Repeated application of this inequality shows that

max I~~~~(O) I < 
~~ 

exp{2K 
~ (j+1)c } .

I x i c i  jl

Hence by (4)

(10) j
~ (9)l < y0(n+l)2~~ 1 ~

for —l < x < 1 and n = 0,1 Now we return to (7) . Multiplying both sides of (7)

by eifl 0 
and summing for n — 0,1 ... ,ni we obtain

in
4 e m 

•m (ê) = ~ (11—2 -f-- ] p (x) - 2%1 ~~_1(x) +

I
+ f l— 2 -~ --~- ] p  (x) )n-2

Therefore by (8) and (9)

1
(11) J4~(e)~ < 2K( i—x 2 ) 2

n~ O 
C j (0 )~

Using inequality (10) we get

1

I$ (0) < 2~~~~(l-~
2 ) 

n~O n

If 21CR < 1 then by (4) and (9) the estimate (5) follows . Suppose that 21CR > 1 . Then

using (4) we obtain

1

~~~ I < 2Ky
0
(1_x 2) 2(~.f1)2

KA_ l 
~ c~ (n+l)

n—0

< 2K To
t +l)2~~~

l log(m+1) (l-x2) 2

which is much better than (10) . Now plug this inequality into Cli) • If 21CR — 1 < 1

then (5) follows. Otherwise we get a new estimate which we again plug into (11). After

finitely many similar steps we obtain

—4—
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for — 1 <  x < 1 and a = 1,2 ,... which combined with (9) yields (5) .  The inequality (6)

follows from (5) and Theorem 7.5 of (3] .

Finally we note that the example of 3acobi polynomials shows that apart from the

constants A1 and A2 our result cannot be improved .
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